AGENDA BILL
Beaverton City Council
Beaverton, Oregon

SUBJECT: Contract Award – Engineering Services for the Design and Construction of the Beaverton Creek Stormwater Treatment Facilities Retrofit (CIP #8135A and 8135B)

FOR AGENDA OF: 10-2-18 BILL NO: 18209
MAYOR'S APPROVAL:
DEPARTMENT OF ORIGIN: Public Works
DATE SUBMITTED: 09-12-18
CLEARANCES: Mayor's Office
City Attorney
Finance
Purchasing
Engineering

PROCEEDING: CONSENT AGENDA
(CONTRACT REVIEW BOARD)

EXHIBITS:
1. CIP Document Project Maps
2. Proposal for Professional Engineering Services -- OTAK, Inc.
3. Subcontractor Disclosure Form listing MBE, WBE, ESB, and SDV

BUDGET IMPACT

<table>
<thead>
<tr>
<th>EXPENDITURE</th>
<th>AMOUNT</th>
<th>APPROPRIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED</td>
<td>$506,050</td>
<td>BUDGETED</td>
</tr>
</tbody>
</table>

*Account Number 513-75-3950-683 – Storm Drain Fund - Maintenance and Replacement Program - Construction Design and Engineering Inspection Account. The Adopted FY 2018-19 Budget includes $320,000 for this contract with the remaining $186,050 contract amount anticipated to be expanded in FY 2019-20 and will be included in the FY 201-20 budget process. This project's construction completion date is anticipated to be February 2020.

RECOMMENDED ACTION:
City Council, acting as the Contract Review Board, authorizes the Mayor to sign a contract with OTAK, Inc., in the amount of $506,050 for design and construction engineering services for the Beaverton Creek Stormwater Treatment Facilities Retrofit, Capital Improvement Plan (CIP) Projects #8135A and 8135B, in a form approved by the City Attorney.

HISTORICAL PERSPECTIVE:
On June 19, 2018, City Council approved the 2018-2022 CIP as part of Agenda Bill 18133. CIP Projects 8135A and 8135B were included in the 2018-2022 CIP document and are two separate projects with the list titles of 11750 SW Beaverton Hillsdale Hwy Stormwater Outfall to Beaverton Creek Retrofit, and 4140 SW Watson Ave Stormwater Outfall to Beaverton Creek Retrofit, respectively.

Regional stormwater treatment facilities that collect and treat stormwater from a large area that will see multiple redevelopment projects allow them to occur without having to provide on-site treatment that sometimes consumes developable area. The larger regional facilities also provide for more efficient operations and maintenance over time.

CIP Project 8135A treatment facility will be located on land owned by the City of Beaverton at 11750 SW Beaverton Hillsdale Highway and will be an underground facility that will allow parking on top. CIP Project 8135B is also an underground facility that will allow parking on top and will be located at 4140

Agenda Bill No: 18209
SW Watson Avenue; it will be within a subsurface and surface storm drainage easement obtained from the property owner on December 29, 2017.

A Qualifications Based Request for Proposals for professional engineering services was advertised on July 6, 2018 (solicitation #3386-19B). On July 16, 2018, a mandatory RFP pre-proposal meeting was held and ten engineering firms attended. Two proposals were received and opened at 2:00 pm on July 27, 2018. The City reviewed the proposals to ensure that they met the requirements for qualifications and then scored the proposals. OTAK, Inc., had the highest score of the two proposals. Staff then negotiated a scope of work and budget in the amount of $506,050 with OTAK, Inc.

INFORMATION FOR CONSIDERATION:
The major tasks within OTAK’s statement of work include the following:

- Phase 1 – Project Management
- Phase 2 – Review of Available Information
- Phase 3 – Survey
- Phase 4 – Hydrologic and Hydraulic Analysis
- Phase 5 – 30% design
- Phase 6 – Utility Investigation (included potholing)
- Phase 7 – Geotechnical Engineering
- Phase 8 – Hazardous Materials Corridor Study
- Phase 9 – Visual Mitigation
- Phase 10 – Permitting Support (Reserved) – currently zero dollars allocated
- Phase 11 – 60% design
- Phase 12 – 90% design
- Phase 13 – Final Design and Bid Assistance
- Phase 14 – Construction Management
- Phase 15 – Construction Engineering
- Phase 16* – Construction Monitoring (a.k.a. Inspection)
- Phase 17* – Construction survey
- Phase 18 – Project Close-out
- Phase 19 – Extra Work as authorized.

* City may reduce this task activity should the City determine it has the staff resources to do this important activity. City to make the determination prior to advertising for construction bids.

OTAK estimates that the total work by current state certified ESB (Emerging Small Business), MBE (Minority-Owned Business), WBE (Women-Owned Business and/or SDV (Service-Disabled Veteran-Owned Business) businesses accounts for up to 11.6 percent of the total scope of work, as currently envisioned. Through the Request for Proposals, the City asked for the engineering firm to provide a strategy for achieving a goal of 10 percent.

This contract will include activities sometimes done by City staff, such as construction monitoring (inspection) and construction survey. These activities are included in this contract due to the uncertainty of City staff availability for these activities.
Project Number: 8135A
Project Name: 11750 SW Beaverton Hillsdale Hwy Stormwater Outfall to Beaverton Creek
Retrofit
Project Description: Regional public stormwater treatment facility to help promote redevelopment in an area that is targeted for increased density and pedestrian connectivity.

Map:

Project Justification: A regional facility collects and treats stormwater from a large area that could see multiple redevelopment projects and allows them to develop without having to provide on-site treatment. The larger regional facilities provide efficient operations and maintenance.

Estimated Date of Completion: 10/31/2019
Estimated Project Cost: $800,000
First Year Budgeted: FY18/19
New Project: ✔

Funding Data:

<table>
<thead>
<tr>
<th>Project No</th>
<th>Fund No</th>
<th>Fund Name</th>
<th>Amount</th>
<th>FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>8135A</td>
<td>3950</td>
<td>Storm Maint/Replacement</td>
<td>$150,000</td>
<td>FY2018/19</td>
</tr>
</tbody>
</table>

Total for FY: $150,000
Project Data

8135B
4140 SW Watson Ave Stormwater Outfall to Beaverton Ck Retrofit
Regional public stormwater treatment facility to help promote redevelopment in an area that is targeted for increased density and pedestrian connectivity according to the Central City Strategy of the Civic Plan, including portions of SW Canyon Rd.

Map:

Project Justification:
A regional facility collects and treats stormwater from a large area that could see multiple redevelopment projects and allows them to develop without having to provide on-site treatment. The larger regional facilities provide efficient operations and maintenance.

Project Status:
FY17-18: Began RFP QBS process in Mar 2018. FY18-19: Select consultant and complete design. FY19-20: Complete construction prior to the beginning of CIP 3519A.

Estimated Date of Completion: 10/31/2019
Estimated Project Cost: $800,000

Funding Data:

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Fund No.</th>
<th>Fund Name</th>
<th>Amount</th>
<th>FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>8135B</td>
<td>3950</td>
<td>Storm Maint/Replacement</td>
<td>$170,000</td>
<td>FY2018/19</td>
</tr>
</tbody>
</table>

Total for FY: $170,000
Project Scope of Work
August 28, 2018

Beaverton Creek Stormwater Treatment Facilities Retrofit
City CIP #8135A/#8135B
Otak Project No. 18739

Understanding

The City of Beaverton is investing in a regional public stormwater treatment facility to help promote redevelopment in an area that is targeted for increased density and pedestrian connectivity according to the Central City Strategy of the Civic Plan, including portions of SW Canyon Road. A regional facility collects and treats stormwater from a large area that could see multiple redevelopment projects and allows them to develop without having to provide on-site treatment. Larger regional facilities provide efficient operations and maintenance. We will provide engineering design and support services from preliminary concept through to final construction with advertisement occurring Spring 2019 and construction occurring in Fall 2019. Other consultant services will be needed for geotechnical investigation and pot-holing to understand existing conditions and constraints.

City's responsibility

Obtain private property access approvals

Scope of Work

Phase 1: Project Management

Consultant shall:

- Prepare project work plan and hold kick-off meeting with design team to review work plan and set expectations
- Prepare detailed project schedule, and update as needed.
- Plan and track progress with respect to scope, schedule, and budget.
- Prepare monthly progress reports and submit with invoices.
- Conduct regular check-in phone calls with the City Project Manager.
- Attend project review meetings occurring at Hydraulic Analysis, 30% design, 60% design, and 90% design phases and up to two additional (up to six total). Provide meeting minutes and agenda for all meetings.

1. Capital Improvement Plan (CIP) projects 8135A and 8135B were included in the 2018-2022 CIP document and are two separate project with the list titles of 11750 SW Beaverton Hillsdale Hwy Stormwater Outfall to Beaverton Creek Retrofit, and 4140 SW Watson Ave Stormwater Outfall to Beaverton Creek Retrofit, respectively
• Coordinate, track, and implement City review and relevant meeting comments.
• Manage subconsultants and subconsultants’ payment.

Deliverables
• Monthly invoices and progress reports.
• Project review meetings and corresponding minutes.

Phase 2: Review Available Information

Consultant shall:
• Review planning documents, development codes, and design standards and determine those that are relevant to the project.
• Document the Basis of Design in a brief memorandum, including treatment standards and assumptions.
• Prepare conceptual plan and profile drawings for proposed improvement.
• Prepare maps noting potential utility conflicts between known utilities from as-buils and GIS data and contact utilities to confirm presence of utilities within the project area.
• Conduct field visit to verify conveyance path, site constraints, and note survey requirements.
• Identify additional constraints and information needs that will require survey, geotechnical investigation, and potholing.

Deliverables:
• Basis of Design Memorandum (MS Word and *.PDF format)
• Conceptual Plan and Profile Drawings (11x17 strip map in *.PDF format)

Phase 3: Survey

Consultant shall:
• Establish control in the areas.
• Request utility locates.
• Coordinate access and provide notice where necessary.
• Survey in the vicinity of the proposed storm facilities, approximately the area shown for “Detailed Topography and Basemap” in Figures below to include:
 o Topography
 o above-ground appurtenances, traffic striping, curbs, trees, and other surface features
• Survey additional area shown in Figures below to include:
 o Existing storm sewer main lines of the upstream and downstream conveyance system (pipe size, type, invert, and rim elevation).
 o Sanitary sewer and other utilities at potential excavation and trenching locations for up to 1,000 linear feet of storm system.
 o Include other utility surface features such as, traffic, lighting, electric, telecommunications boxes, water and gas valve lids, top of water valve nut.
 o Pothole locations
• Prepare a project basemap and digital terrain model of existing conditions in Autodesk Civil 3D.
Deliverables:
- Basemap drawing (Autodesk Civil 3D file)

Assumptions
- See figures below for survey areas

Figure 1: Survey Area for 11750 SW Beaverton Hillsdale Highway (CIP 8135A)
Phase 4: Hydrologic and Hydraulic Analysis

Consultant shall:

- Delineate drainage basins and calculate water quality flow rates using available data, including topography, GIS pipe data, and as-builts.
- Perform water quality flow calculations and determine facility size and location.
- Review and/or analyze existing data to determine model boundary conditions.
- Develop preliminary existing conditions runoff and conveyance model using XP-SWMM.
- Update runoff and conveyance model with survey data to develop final existing conditions model.
- Iterate conveyance model to calculate, hydraulic grade line, and flow splitting requirements for design options and determine the preferred approach.
- Update conveyance models for 30% design.
- Update conveyance models for 60% design and add hydraulic grade line to pipe profile in 60% drawings.
- Update conveyance models for 90% and final design.
- Prepare Preliminary Calculation Summary Plan Sheets shown in Table 1

Deliverables:

- Preliminary Calculation Summary Plan Sheets
- XP-SWMM model files (compressed *.zip folder) (or equivalent)

Phase 5: 30% Design
This task is to select a preferred approach and advanced the design concept to a 30% level of detail, including plans and cost estimate to show the expected extents of the project and identify potential utility conflicts.

Consultant shall:
- Prepare a 30% Plan Set with approximate sheets as shown in Table 1
- Prepare planning level cost estimate using standard ODOT bid items where possible and special provisions where necessary.
- Send first project notification letter to utilities at 30% Design to inform them of potential conflicts that require resolution.
- Review for constructability

Deliverables:
- 30% Plans (11x17 hard copy and *.pdf)
- 30% Cost Estimate (MS Excel and *.pdf files)

Phase 6: Utility Investigations
The purpose of this task is to provide a general scope of the services anticipated and a budget allowance to hire a potholing contractor. Since the exact work plan is not yet known, the scope of work is a best guess and the budget is an allowance. Actual scope and costs will be identified at 30% design level and discussed with the City. Utility Investigations and Geotechnical Investigations may be able to be scheduled to occur at the same time, reducing cost for permitting and traffic control.
Consultant shall:
- Map potential utility conflicts in 30% design that cannot be avoided and prepare an exploration work plan to conduct pothole excavations at up to 20 locations.
- Contact potholing contractor.
- Prepare an exploration work plan memorandum for review and approval by the City prior to the commencement of drilling to obtain the required permits to work in the right-of-way.
- Submit an application to the City to obtain a right-of-way permit for single lane closure under traffic control.
- Submit a request to the Utility Notification Center at least 48 hours prior to the start of drilling.
- Contact a private utility locator to also clear the exploration sites.
- Physically expose utilities at up to 20 locations using a vacuum excavation method.
- Record location of the utilities.
- Restore pavement at each boring with approved cold-patch AC pavement and/or Portland cement concrete as required by the permit.

Phase 7: Geotechnical Engineering
Consultant shall:

INVESTIGATIONS
- Prepare an exploration work plan memorandum for review and approval by the City prior to the commencement of drilling to obtain the required permits to work in the right-of-way. The work plan will include the following:
- a scope of work
- traffic control plans
- a site health and safety plan.

- Submit an application to the City to obtain a right-of-way permit for single lane closure under traffic control and up to three days of flagging.
- Submit a request to the Utility Notification Center at least 48 hours prior to the start of drilling.
- Contact a private utility locator to also clear the borings.
- Drill three bore holes at each treatment facility location. Two borings will be drilled to depths of between 20 and 25 ft, and one boring will be drilled to a depth of 50 to 60 ft. The deeper boring will provide information for development of seismic design criteria.
- Drill two borings to depths of between 15 and 20 ft along the stormwater utility alignment for CIP 8135A. Drilling work will be performed during nighttime hours, between morning and late afternoon commute times. One planned at the west end of the project in the dead-end street that connects to SW Broadway Street, and one is planned in SW Beaverton Hillsdale Highway about halfway between SW Lombard Avenue and the treatment facility.
- Drill five borings to depths of between 15 and 20 ft along the stormwater utility alignment for CIP 8135B. Drilling work for Site CIP 8135B will be performed during daytime hours. They are planned for the following location:
 - One in SW Hall Boulevard
 - Three borings in SW Watson Avenue
 - One boring in SW Millikan Way.
- Use a vacuum truck to advance the borings made in the roadways to a depth below any close utilities prior to drilling.
- Use mud-rotary drilling methods from a truck-mounted drill rig.
- Core the pavement at each boring location with a 6- or 8-in. core barrel.
- Collect samples from each boring at about 2.5-feet intervals of depth in the upper 15-feet and at 5-feet using split-spoon and/or Shelby tubes.
- Conduct Standard Penetration tests on the disturbed split-spoon samples at intervals below 15 feet.
- Place uncontaminated drilling spoils from the borings in metal drums and removed from the site.
- Restore pavement at each boring with approved cold-patch AC pavement and/or Portland cement concrete as required by the permit.
- Provide geotechnical engineering staff to locate the general areas for drilling and to be on-site during drilling to observe and maintain a log of the materials and conditions uncovered during the work.
- Place a vibrating wire piezometer in one borehole at each of the treatment facilities to permit measurements to be made of the depth to the groundwater. The depth of the groundwater will be an important consideration in design and construction of the facilities. The top of the piezometer cable will be protected at the ground surface with a flush-mounted metal monument.

LABORATORY TESTING
- Conduct the following laboratory tests to classify the subsoils and provide data on the important physical characteristics:
 - Natural water content
o washed sleeve analyses
o Atterberg limits,
o Unit weight determinations,
o Strength and consolidation testing.

ENGINEERING ANALYSIS

- Review results of the testing and perform geotechnical analysis to support design recommendations for the following:
 o earthwork, including cut and fill slopes and wet-weather construction
 o temporary excavation shoring, dewatering, construction considerations
 o allowable bearing pressures
 o bearing strata
 o estimated settlements (total and differential)
 o seismic design criteria, including a Site Class in accordance with the current International Building Code (IBC) and Oregon Structural Specialty Code
 o structural backfill requirements
 o design lateral earth pressures and coefficient of base friction design
 o design groundwater water levels and methods for resisting uplift (treatment facility vaults) and
 o pavement design for new parking lot pavement at the treatment facility project locations
 o pavement considerations for replacement of pavement removed for installation of new utilities in the roadways

DOCUMENTATION

- A Draft Geotechnical Report will be prepared that discusses the work accomplished and presents the results of the various tests and office studies.
- A Final Geotechnical Report will be provided following review and submission of comments.
- Provide review and input during preparation of plans and specifications
- Attend up to two project meetings during the design and final document preparation phase.

Deliverables:
- Draft Geotechnical Report (.PDF file)
- Final Geotechnical Report (.PDF file)

Phase 8: Hazardous Materials Corridor Study (HMCS)

Consultant shall:
- Conduct a site reconnaissance to identify potential sources of contamination that could affect construction.
- Review available federal, State, and commercially available environmental databases to identify sites that could potentially affect the project.
- Conduct historical research to identify past uses of the project corridor and adjacent properties, using one or more of the following resources:
- Sanborn fire insurance Maps (if available)
- Aerial Photographs

- Review pertinent records made available by the City as they relate to the environmental condition of the project corridor.
- Prepare a Draft HMCS Memorandum summarizing the information obtained through the activities listed above. The memorandum will include photographs documenting project corridor observations. If warranted, the report will include conclusions that identify specific sources of contamination that could potentially impact project construction and recommendations for further investigation.
- Prepare a Final HMCS Memorandum that incorporates response to review comments and input from the project team review.

Deliverables:
- Draft HMCS Memorandum (.PDF file)
- Final HMCS Memorandum (.PDF file)

Phase 9: Visual Mitigation

Consultant shall:
- Prepare a couple conceptual site redevelopment plans for the Damerow Ford site along SW Watson.
- Show how the proposed water quality facility would fit with the development.
- Conduct design workshop with the City to discuss maintenance access needs for the proposed water quality facilities and brainstorm visual mitigation options. Select one or two preferred options.
- Prepare summary of meeting discussion and develop visualization of the one or two preferred visual mitigation concepts.
- Send renderings to City for review and comment.
- Develop a revised visualization for a single visual mitigation concept to be advanced with the rest of the plan set.

Deliverables:
- Conceptual Site Redevelopment Plan
- Meeting summary
- Three visualizations (.pdf or .jpg)
- Final visual mitigation design

<table>
<thead>
<tr>
<th>Sheet ID</th>
<th>Plans</th>
<th>60%</th>
<th>90%</th>
<th>Final</th>
<th>As-Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>Drainage Area Map and flow table</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>03-04</td>
<td>Flow Splitter calculations</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>05-06</td>
<td>Primary Treatment and Cartridge Capacity calculations</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Phase 10: Permitting Support (RESERVED)
Phase 11: 60% Design

The purpose of this task is to advance the design, including plans, specifications, and estimates to a 60% level of detail to support utility coordination and provide the City with a progress set of drawings for review.

Consultant shall:
- Respond to 30% review comments from the City and incorporate into plans and cost estimates.
- Prepare 60% Plan Set with approximate sheets as shown in Table 2.
- Prepare 60% Draft Level Cost Estimate.
- Coordinate with utilities to develop a plan to resolve conflicts.
- Send second project notification letter to utilities to document the agreed upon plan and schedule for resolving conflicts.

Deliverables:
- 60% Plan Set (11x17 hard copy and *.pdf file)
- 60% Draft Level Cost Estimate (MS Excel and *.pdf files)
- Draft List of Specifications and Special Provisions (MS Word File)
- Utility potholing information.

Phase 12: 90% Design

This task is to prepare final plans, specifications, and cost estimate for one last review by City for obtaining City permits and identifying revisions needed for bidding.

Consultant shall:
- Respond to 60% review comments from the City and incorporate into 90% plans, specifications, and cost estimate.
- Prepare 90% Plan Set with approximate sheets as shown in Table 2.
- Prepare 90% Level Cost Estimate.
- Prepare an estimated schedule for Construction.
- Maintain coordination with utilities working on resolving conflicts prior to construction.
- Include special provisions for utility coordination required by contractor.

Deliverables:
- 90% Plan Set (11x17 hard copy and *.pdf file)
- 90% Level Cost Estimate (MS Excel and *.pdf files)
- Final Draft Technical Specifications, Including Special Provisions (MS Word File)

Phase 13: Final Design and Bid Assistance

This task is to complete the plans, specifications, and engineer’s estimate for bidding and support the City during selection of a contractor.
Consultant shall:
- Prepare Final sealed plan set.
- Prepare Final cost estimate.
- Develop pre-bid meeting agenda.
- Lead pre-bid meeting.
- Prepare up to one (1) Bid Addendum
- Assist with bid opening and bid review.

Deliverables:
- Final Sealed Plan Set (11x17 Mylar and *.pdf)
- Final Engineer’s Estimate (MS Excel and *.pdf files)
- Final Sealed Technical Specifications, Including Special Provisions (*.pdf)
- Electronic files (AutoCAD Civil 3D)

Assumptions:
- City will prepare Bid Forms and Bid Book for advertisement.

<table>
<thead>
<tr>
<th>Table 2: Assumed Project Plan Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet ID</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>G01</td>
</tr>
<tr>
<td>G02-G03</td>
</tr>
<tr>
<td>ESC01-02</td>
</tr>
<tr>
<td>C01-06</td>
</tr>
<tr>
<td>D01-02</td>
</tr>
<tr>
<td>D03</td>
</tr>
<tr>
<td>D04-05</td>
</tr>
<tr>
<td>D05-07</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Phase 14: Construction Management
This task is to provide Construction Management to assist the City with contract administration and to monitor that construction of the project is completed in substantial accordance with the plans and specifications.

Consultant shall:
- Attend and lead Pre-Construction Meeting
- Perform Construction contract administration
- Attend and lead Project Progress Meetings (schedule, prepare agendas, attend, prepare minutes.)
- Monitor Construction Contractor’s Schedule and submittal schedule
- Maintain construction quality documentation
• Document communications (directives, actions, issues) on Progress Reports
• Measure and document construction quantities for monthly pay estimates
• Review and recommend contractor payment.
• Measure and document final construction quantities
• Coordinate design modifications and associated change orders.
• Track changed work and coordinate the issuance of change orders.
• Coordinate the recording of as-constructed plan changes
• Log, track, respond to submittals
• Maintain a copy of submittals for project files

Deliverables:
• Meeting Agendas (emailed to list of attendees 1 day prior to meeting)
• Minutes (emailed to attendees within 2 days following meeting)
• Pay Estimate recommendations
• Change Order recommendations

Phase 15: Construction Engineering
This task is to provide construction engineering, including the review of construction shop drawings and submittals, engineering consultation during construction, and design modifications as dictated by construction activities.

Consultant shall:
• Attend the Pre-Construction Conference
• Review and comment on Shop Drawings, Working Drawings, and Submittals, including:
 o Construction Contractor's construction schedule
 o Erosion Control
 o Traffic Control
 o Structures (vaults, manholes, inlets, etc.)
 o Pipes
 o Aggregate
 o Geotextiles
 o Asphalt/Concrete
 o Seed
 o Other as required by construction contract specifications
• Attend up to (10) Project Progress Meetings
• Prepare detailed engineering design revisions necessitated by conditions encountered during construction, if requested by the City, (not to exceed 40 hours).
• Answer questions to clarify construction contract documents.
• Respond to field inquiries (not to exceed 80 hours).
Deliverables:
- Reviewed Submittals (PDF file of submittal with review stamp and response)
- Email response to RFI's
- Design revisions (PDF file)
- Response to field inquiries in writing (email or PDF of response Memo)

Phase 16: Construction Monitoring
This task is for providing on-site monitoring of construction for substantial conformance with contract documents. For purposes of establishing a level of effort, assume Active Construction lasts 10 weeks. Note: City may reduce this task activity should the city determine it has the staff resources to do this important activity. City to make the determination prior to advertising for construction bids.

Consultant shall:
- Provide on-site observation for conformance with contract documents (40 hrs/wk for 10 weeks + 20 hrs/wk for 4 weeks)
- Coordinate closely with Construction Contractor to schedule on-site observations to minimize impacts to the construction schedule
- Monitor Construction Contractor's quality control process against contract requirements
- Perform Construction Activity Monitoring, including:
 - Permit Compliance
 - Temporary traffic control
 - Erosion Control
 - Foundation excavation
 - Earthwork
 - Structures
 - Storm Sewer Pipe
 - Dewatering
 - Temporary shoring
 - Surface Treatment
 - Visual Mitigation
 - Seeding and planting
- Prepare Daily Progress reports on days for which construction activities are observed
- Take digital photographs during construction and store in directories organized by date photo was taken
- Monitor Construction Contractor QC technicians for proper certification, proper testing frequency and procedures are being followed
- Maintain a summary of field tests
- Obtain, review, and compile QC documentation
- Provide notice of Non-conformance to the City upon finding work not meeting contract requirements when Construction Contractor has failed to comply with requests and suggestions for remedy.

Deliverables:
- What are we giving them (format, size, # of copies, etc.)
- Daily Reports
- Copies of photos
- Summary of field testing

Phase 17: Construction Survey
This task is for construction verification surveying to provide quality assurance of Construction Contractor's construction surveying.

Note: City may reduce this task activity should the city determine it has the staff resources to do this important activity. City to make the determination prior to advertising for construction bids.

Consultant shall:
- Set survey control
- Respond to staking requests within 2 working days following receipt of written request for staking need.
- Provide up to 32 hours of field staking, anticipated to include the following:
 - Two (2) offsets per structure
 - One (1) offset to the line at 10', 25', 50', and every 50' thereafter.
- Perform as-built survey of location and inverts of new pipes and structures.

Deliverables:
- Construction stakes set in the field

Phase 18: Project Close-out
This task is to complete final on-site inspections and submit final project records required for final payment.

Consultant shall:
- Hold Final On-site Inspection Meeting
- Create punch list and monitor completion of punch list items.
- Issue final completion recommendation to City.
- Update design calculations with as-built information.
- Update Calculation Plan Sheets with updated design calculations.
- Create As-Built Drawings to include
 - Construction plans updated with as-built survey information
 - Calculation Plan Sheets
 - Shop Drawings
- Submit Final Project Records

Deliverables:
- Punch List (electronic document)
- Calculation Plan Sheets (.PDF file)
- As-built drawings (.PDF file)

Phase 19: Extra Work
Consultant shall perform extra work as authorized and approved by the City prior to performance of such work outside the scope of this contract.
<table>
<thead>
<tr>
<th>% M/MVS/DSB (Approx)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6%</td>
<td>$322,220</td>
</tr>
<tr>
<td>$306,030</td>
<td>$322,220</td>
</tr>
<tr>
<td>$176,860</td>
<td>$320</td>
</tr>
<tr>
<td>$229,790</td>
<td>$228,120</td>
</tr>
</tbody>
</table>
Beaverton Creek Stormwater Treatment Facilities Retrofit

Estimate

Otak, Inc.

Otak Project # 18739

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Work Plan and Scope</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50,178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detailed Project Scope and Updates</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monthly Progress Reports</td>
<td>3</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular Consultation with CM PM</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conceptual Coordination</td>
<td>5</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Team Coordination</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,562</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update to City Survey Records</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Review Meetings</td>
<td>1</td>
<td>54</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,438</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REVISED Available Facilities Survey and Map</td>
<td>18</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>43</td>
<td>18</td>
<td>12</td>
<td></td>
<td></td>
<td>3,098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compile and Assemble Addendums and GIS Data</td>
<td>34</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification of relevant design guidelines, site controls, and additional data needs, including survey</td>
<td>24</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey Coordination</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial Field Survey</td>
<td>6</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>8,960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up Survey</td>
<td>5</td>
<td>60</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>62</td>
<td>120</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Coastal Environmental Assessment</td>
<td>34</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential and Geological Analysis</td>
<td>32</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determine preferred approach and update for 10% design change</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update model for 10% design</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model update for 10% and Final design</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotext analysis</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public relations, Administrative Support</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Relations, Administrative Support</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>72</td>
<td>96</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,898</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey Coordination</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial Field Survey</td>
<td>6</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>8,960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up Survey</td>
<td>5</td>
<td>60</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>62</td>
<td>120</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Coastal Environmental Assessment</td>
<td>34</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential and Geological Analysis</td>
<td>32</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determine preferred approach and update for 10% design change</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update model for 10% design</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model update for 10% and Final design</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotext analysis</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public relations, Administrative Support</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Relations, Administrative Support</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>72</td>
<td>96</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,898</td>
<td></td>
</tr>
</tbody>
</table>

Total Budget

Total Estimated Budget: $54,178
Beaverton Creek Stormwater Treatment Facilities Retrofit
Fee Estimate

Otkik, Inc.

Otaki Project #: 18739

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
<th>GRI</th>
<th>3D InFAStion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Principal</td>
<td>Sr. Engineer</td>
</tr>
<tr>
<td>7/11</td>
<td>Utility Investigation</td>
<td>112</td>
<td>12</td>
</tr>
<tr>
<td>7/2</td>
<td>Geotechnical Engineering</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>7/5</td>
<td>Hazardous Materials Corridor Study</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>9/5</td>
<td>Visual Mitigation SC</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Permitting Support (RESERVED)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>60% Design</td>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>60% Design AC</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>13.5</td>
<td>Final Design and Bid Assistance</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>13.6</td>
<td>Project Closeout</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>Extra Work #3</td>
<td>24</td>
<td>300</td>
</tr>
</tbody>
</table>

Total Hours

<table>
<thead>
<tr>
<th>Total Hours</th>
<th>18</th>
<th>24</th>
<th>397</th>
<th>24</th>
<th>300</th>
<th>18</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Labor Cost</td>
<td>$21,300</td>
<td>$20,570</td>
<td>$14,820</td>
<td>$10,200</td>
<td>$10,000</td>
<td>$65,900</td>
<td>$76,090</td>
</tr>
<tr>
<td>Direct Expenses</td>
<td>$47,720</td>
<td>$2,050</td>
<td>$18,009</td>
<td>$1,524</td>
<td>$25,120</td>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>Project Totals</td>
<td>$85,070</td>
<td>$78,620</td>
<td>$121,320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Subcontractor Labor Page 41 to 51
<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>Direct Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western States Soil Conservation</td>
<td>1</td>
<td>$3,500</td>
</tr>
<tr>
<td>DPL Post</td>
<td>1</td>
<td>$1,600</td>
</tr>
<tr>
<td>GNR Post</td>
<td>1</td>
<td>$900</td>
</tr>
<tr>
<td>GRI</td>
<td>1</td>
<td>$3,410</td>
</tr>
<tr>
<td>OAK</td>
<td>1</td>
<td>$1,100</td>
</tr>
</tbody>
</table>

3D Inversion

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>Direct Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western States Soil Conservation</td>
<td>1</td>
<td>$3,500</td>
</tr>
<tr>
<td>DPL Post</td>
<td>1</td>
<td>$1,600</td>
</tr>
<tr>
<td>GNR Post</td>
<td>1</td>
<td>$900</td>
</tr>
<tr>
<td>GRI</td>
<td>1</td>
<td>$3,410</td>
</tr>
<tr>
<td>OAK</td>
<td>1</td>
<td>$1,100</td>
</tr>
</tbody>
</table>

Direct Expense List
CITY OF BEAVERTON – GOOD FAITH EFFORT (GFE) PROGRAM

PERSONAL / PROFESSIONAL SERVICES CONTRACT: SUBCONTRACTOR DISCLOSURE FORM

Company Name: Otak, Inc.
Project Name: Beaverton Creek Stormwater Facilities Retrofit

LIST ALL SUBCONTRACTORS—CERTIFIED AND NON-CERTIFIED

<table>
<thead>
<tr>
<th>Name</th>
<th>CAD Drafting</th>
<th>DIRECT SUBCONTRACTOR TO OTAK</th>
<th>Up to $23,320</th>
<th>Type of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D InFusion</td>
<td>CAD Drafting</td>
<td>Direct Subcontractor to OTAK</td>
<td>$23,320</td>
<td>MBE, WBE</td>
</tr>
<tr>
<td>Address</td>
<td>8110 SW Valley View Drive</td>
<td></td>
<td></td>
<td>ESB, ISDV</td>
</tr>
<tr>
<td>City/St/Zip</td>
<td>Portland, OR 97225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>503.296.6644</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Geotechnical Engineering/Environmental</th>
<th>Direct Subcontractor to OTAK</th>
<th>Up to $89,070 minus subcontractor costs</th>
<th>Type of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRI</td>
<td>Geotechnical Engineering/Environmental</td>
<td>Direct Subcontractor to OTAK</td>
<td>$89,070 minus subcontractor costs</td>
<td>MBE, WBE</td>
</tr>
<tr>
<td>Address</td>
<td>9750 SW Nimbus Avenue</td>
<td></td>
<td></td>
<td>ESB, ISDV</td>
</tr>
<tr>
<td>City/St/Zip</td>
<td>Beaverton, OR 97008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>503-641-3478</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Flagging services</th>
<th>Sub-Subcontractor to for GRI</th>
<th>Up to $9,260</th>
<th>Type of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>D&H Flagging</td>
<td>Flagging services</td>
<td>Sub-Subcontractor to for GRI</td>
<td>$9,260</td>
<td>MBE, WBE</td>
</tr>
<tr>
<td>Address</td>
<td>1621 SE Pardee St</td>
<td></td>
<td></td>
<td>ESB, ISDV</td>
</tr>
<tr>
<td>City/St/Zip</td>
<td>Portland, OR 97202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>(503) 232-2488</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Drilling services</th>
<th>Sub-Subcontractor to for GRI</th>
<th>Up to $26,300</th>
<th>Type of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western States Soil Conservation</td>
<td>Drilling services</td>
<td>Sub-Subcontractor to for GRI</td>
<td>$26,300</td>
<td>MBE, WBE</td>
</tr>
<tr>
<td>Address</td>
<td>3100 Schmidt Ln, PO BOX 428</td>
<td></td>
<td></td>
<td>ESB, ISDV</td>
</tr>
<tr>
<td>City/St/Zip</td>
<td>Hubbard, OR 97032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>503-982-1777</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CITY OF BEAVERTON – GOOD FAITH EFFORT (GFE) PROGRAM

PERSONAL / PROFESSIONAL SERVICES CONTRACT: SUBCONTRACTOR DISCLOSURE FORM

Company Name: __________________________ Project Name: __________________________

LIST ALL SUBCONTRACTORS—CERTIFIED AND NON-CERTIFIED

<table>
<thead>
<tr>
<th>Name</th>
<th>Description of Work</th>
<th>Dollar Value of Subcontract</th>
<th>Type of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be Determined</td>
<td>Potholing Contractor</td>
<td>Up to: $30,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be a Direct Subcontractor to OTAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For locating actual physical location of existing utilities.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>